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Abstract 

An arrangement of the 122 Shubnikov point groups in 
a periodic table is proposed, the columns of which 
correspond in the usual way to crystal systems. Point 
groups in the same row have many properties in 
common, including content of certain symmetry 
elements, analogous position in the lattice of sub- 
groups, and compatibility with electric and magnetic 
effects. 

1. Introduction 

There are 32 ordinary crystallographic point groups 
and 122 crystallographic Shubnikov point groups. For 
shortness, we shall speak of the 122 point groups and 
the 32 ordinary point groups. We propose an arrange- 
ment of the 122 point groups, which we call the 
'periodic table', because it turns out to have a number 
of analogies with the Periodic Table of chemical 
elements. In the case of groups, we let each period 
occupy a column of the table instead of a row as in the 
case of elements. Many properties of point groups need 
only be given for each row instead of each group. These 
properties include the subgroup relationships among all 
the groups belonging to the same crystal system and 
having space reversal, time reversal and space-time 
reversal among the group elements. Also, the electric 
and magnetic effects compatible with the point groups 
in a row have many properties in common, but evolve 
systematically as one goes from left to right in the 
periodic table, i.e. from the triclinic to the cubic system. 

2. The periodic table of point groups 

The periodic table of point groups is given in Table 1. 
Each of columns 3-8 contains the point groups 
belonging to one or two crystal systems, as is usually 
done for the 32 ordinary crystallographic point groups. 
Column 1 numbers the rows, column 2 gives a possible 
choice of the generators for the point groups in the 
corresponding row: N, N' ,  N, N'  act along the z axis 
and 2, 2', m, m' along the y axis of an orthogonal 
coordinate system {i.e. the axis of the (anti)rotation 
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diad and the normal to the (anti)reflexion plane point in 
the y direction [010] }. The only exception is the cubic 
system, where 2, 2', m, m' act along [ 110] and where N 
stands for 2 along [001 ] and 3 along [ 111 ]. Columns 3, 
5 and 8 contain point groups in 16 rows. (The 
generators of column 2 create duplications of these in 
the remaining rows, as indicated between brackets.) 
Columns 4, 6 and 7 contain point groups in all the 31 
rows, in 9 of them in two different orientations. 
Restricting our table to ordinary point groups and 
comparing with the corresponding Fig. 3.3.1 in 
International Tables for X-ray Crystallography (1952), 
we notice a number of differences, the most important 
one being the different position of ~,3m. 

Each group is identified by its short international 
symbol and its Schoenflies symbol. The Schoenflies 
symbol denotes a geometric equivalence class of point 
groups whereas the international symbol lends itself to 
expressing also the orientation of the symmetry 
operators by the order in which their symbols appear. 
We deviate from the conventions in International 
Tables for X-ray Crystallography (1952) by inverting 
the first and third symbols in the orthorhombic system. 
In terms of our orthogonal coordinate system, our 
conventions for symbols of symmetry operators (other 
than 1') can thus be expressed as follows. In column 3 
of Table 1, the symmetry operators 2, 2', m, m' are 
along [010]. In columns 4-8, the first symbol denotes a 
symmetry operator along [001]. (Note that a slash 
separates the two 'first' symbols.) The second symbol 
denotes a symmetry operator along [010], except for 
the cubic system, where it is along [111]. The third 
symbol denotes a symmetry operator along [100] in the 
orthorhombic system, along [ 1 V/30] in the hexagonal 
system, and along [110] in the tetragonal and cubic 
systems. 

The number that appears to the right of the 
Schoenflies symbol is the proposed number of the point 
group and corresponds to its first appearance as we go 
through the table from top to bottom and from left to 
right. To the right of the short international symbol 
appears a number distinguishing the settings, if the 
point group appears several times in different 
orientations. 

The short periods have an entry exactly in those 
rows where the short international symbol for the 
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Table 1. The periodic system of Shubnikov point groups 

1 

2 

3 

4 

5 

6 

7 
__ 

8 

9 

10 

11 

- .  

12 

13 

14 

15 

16 
a 

b 

17 
a 
b 

18 
a 
b 

1 2 

Gene- 
rators 

N 

N' 

N,I '  

N,[ '  

N' , [  

/f/, 1' 

N ' , i '  

N, i , I '  

N,2 

N,m 

N,2' 

N,m' 

N,2 
/ ~ r , m  

N',2 
N',2' 

N',2 
/ V '  ~ m '  

3 4 5 
i 

N = I  N = 2  N = 3  

Mono- Rhombo- 
Triclinic 

C l 1 
1 

(i) 

(1 ') 

clinic 

C z 6 
2 1 

C~ 7 
m 1 

C2(Cl) 
2' 

Cs(CO 

hedr~ 

C 3 

3 

(~) 

(31') 

6 

N = 4  

45 

46 

47 

48 

Tetra- 
gonal 

([ ') m' 1 (3') 

C i 2 C2n 10 C3t 49 
l 2 /m 1 3 

t ' CixO 3 C2xO 11 C3xO 50 
1' 21' 1 31' 

! t 

Cl(Ci) 4 Czh(Cz) 12 C3t(C3) 51 
1' 2/m' 1 3' 

I I 

52 13 
1 ( i l ' )  

(i l ,)  

(il ')  

C~xO 5 
11' 

(31') 

(31') 

(31') 

C31X 0 

31' 

Mono- 
clinic 

C.h(G) 
2'/m' 

CsxO 14 
ml '  1 

C2h( Cs) 15 
2'/m 1 

C2,xO 16 
2/m 1' 1 

Ortho- 
rhombic 

C2 6 D 2 17 D s 
2 2 222 32 

I 
C s 7 C2~ 18 Cs~ 
m 2 2mm 1 3m 

t 

Cz(Cl) 8 Dz(Cz) 19 D3(C3) 
2' 2 22'2' 1 32' 

I 
C~(C l) 9 C 2 v ( C 2 )  20 C3~(Cs) 
m' 2 2m' m' 1 3m' 

(2/m) (3m) 

(321') 

(3'm') 

29 C4 
4 

l 

S 

4 

C4(C2) 
i 4' 

_S,(C9 

I 4' 
301  C~h 

4/m 
i 

31 C4xO 
41' 

I 

32 C4n(C4) 

4/m' 
I 

C4,(C2,) 
4'/m 

S_,xO 
41' 

C,,(S4) 
4'/m' 

I 

33 C4hxO 
4/ml' 

I 

! 

34 D 4 
422 

! 

35 C4~ 
4ram 

i 
36 D4(C4) 

42'2' 
i 

37 C4.(C4) 
4m'm' 

O 2d 
42m 
zim2 

O 4( O~) 
4'22' 
4'2'2 

Oza( Dz) 
4'2m' 
3.'m'2 

53 

54 

55 

56 

57 

58 

59 

60 
1 
2 

61 
1 
2 

62 
1 
2 

(21') 

C2~ 18 
m2m 2 
mm2 3 

20 
2 
3 

Dz(C2) 
2'22' 
2'2'2 

(2/m') 

7 

N = 6  

Hexa- 
gonal 

C 6 76 
6 

_Csn 77 
6 

C6(Cs) 78 
6' 

79 

8 

N = [2,3] 

T 
23 

(m3) 

(231') 

C3h(C3) 

Cubic 

107 

C6~(C 6) 90 
6m'm' 

D3n 91 
62m 1 
¢~m2 2 

D6(D3) 
6'22' 
6'2'2 

D3h(D3) 
6'2m' 
6'm'2 

D6(C 6) 89 
62'2' 

92 
1 
2 

93 
1 
2 

C6~ 88 
6mm 

D 6 87 
622 

C6hxO 86 
6/ml' 

C6n(C3~ 85 
6'/m 

(m31') 

(m31') 

(m31') 

Tnx O 111 
m31' 

0 112 
432 

T a 113 
3.3m 

O(T) 114 
4'32' 

Ta( T) 115 
,~'3m' 

(m3m) 

(4321') 

(m'3m') 

C2~(C9 
m'2m' 
m'm'2 

C3hxO 84 
61' 

C6,(Cu) 
6'/m' 

6' (m'3) 

C6h 80 T h 108 
6/m m3 

i 

C6x0 81 TxO 109 
61' 231' 

i 

C6,(C6) 82 T/.(T) 110 
6/m' m' 3 

i 

83 
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Table 1 (cont.) 

841 

19 
a 
b 

20 
a 
b 

21 
a 
b 

22 

23 

24 

25 

26 

27 

28 
a 
b 

29 
a 
b 

30 
a 
b 

31 

Gene- 
rators 

/V,2' 
IV~m' 

N',m' 
N',m 

IV t ,m 
1~', 2' 

N,2,i 

N,2,1' 

N,2,i' 

/V~m ', i 

N,m, 1 ' 

N, mi' 

N' m, 
N',m' , i  

At,2,1' 
N,m,l '  

N ' , m ' , l '  
N',m, 1 ' 

N,2, i, 1' 

3 

N = I  

Mono- 
clinic 

(2'/m') 

(ml ')  

(2'/m) 

C2h 
2/m 

CzxO 
21' 

C2h(C2) 
2/m' 

C~h(CL) 
2'/m' 

Csx 0 
ml '  

C2h(CJ 
2'/m 

(2/ml ' )  

(2/ml ' )  

(2/ml ' )  

12 
2 

14 
2 

15 
2 

CzhxO 16 
2/m 1' 2 

N = 2  

Ortho- 
rhombic 

C.( C~) 
m2'm' 
mm'2' 

C,v( Q) 
2'm'm 
2' mm' 

C~(C,) 
re'm2' 
m'2'm 

D2h 
mmm 

21 
1 
2 

21 
3 
4 

21 
5 
6 

22 

23 DzxO 
2221' 

Dzh(D z) 24 
m'm'm' 

D2h(Czn) 25 
mm'rn' 1 

C2~xO 26 
2mm l ' 1 

Dz*(Czv) 
m'mm 

D ~ ( C ~ )  
mtmm t 
m'm'm 

27 
1 

25 
2 
3 

26 
2 
3 

C2vXO 
m 2m l ' 
mm21' 

Dzh(C2v) 27 
mm'm 2 
mmm' 3 

5 

N = 3  

Rhombo- 
hedral 

(3m') 

(3ml')  

(3'm) 

D3d 38 
3m 

D3xO 39 
321' 

O3d(D3) 40 
Ym' 

D3d(C31) 41 
3m' 

C3~xO 42 
3ml '  

D3a(C3.) 43 
3'm 

(3m 1') 

(3ml')  

(3ml')  

D3dxO 44 
3ml '  

6 7 8 
| 

N = 4 N = 6 N =  12,31 

Tetra- I Hexa- 
gonal gonal Cubic 

Du(S,) 
42'm' 
4m'2' 

C.(C~) 
4'm'm 
4'mm' 

O~AC~) 
4'm2' 
[$'2'm 

O4h 
4/mmm 

D4xO 
4221' 

D 4h ( D 4) 
4/m'm'm' 

D 4h ( C,lh) 
4/mm'm' 

C4~0 
4mm 1' 

D 4h ( C 4~) 
4/m'mm 

D4a(Dzh) 
4'/mmm' 
4'/mm'm 

O2axO 
42m1' 
4.m21' 

63 
1 
2 

64 
1 
2 

65 
1 
2 

66 

67 

68 

69 

70 

71 

72 
I 
2 

73 
1 
2 

D4h(D~) 74 
4'/m'm'm 1 
4'/m'mm' 2 

D4hxO 75 
4/mmm 1' 

O3h(C3h) 94 
62'm' 1 
6m'2' 2 

C6~(C3~ 95 
6'm'm l 
6'mm' 2 

D3h( C3v) 96 
6'm2' 1 
6'2'm 2 

D6h 97 
6/mmm 

O6xO 98 
6221' 

D6h(D 6) 99 
6/m'm'm' 

D6h(C6h ) 100 
6/mm'm' 

C6~x0 101 
6mm 1' 

D6h(C6v ) 102 
6/m'mm 

D6~(D3d ) 103 
6'/m'mm' 1 
6'/m'm'm 2 

D_3hxO 104 
62m 1' 1 
6m21' 2 

D6h(D3h) 105 
6'/mm'm 1 
6'/mmm' 2 

D6hxO 106 
6/mmm 1' 

(m3m') 

(43m1') 

(m'3m) 

O h 
m3m 

OxO 
4321' 

on(o) 
m'3m' 

On(L) 
m3m' 

TdxO 
43m1' 

O,(V.) 
m'3m 

(m3ml')  

(m3m 1') 

(m3m 1 ') 

OhXO 
m3ml'  

D2hxO 28 
mmm 1' 

116 

117 

118 

119 

120 

121 

122 

Table 2. The abstract groups corresponding to the point groups in Table 1 

Rows 

1-4 
5-10 
11 

12-21 
22-30 

31 

Group 
order 

n 
2n 
4n 

2n 
4n 
8n 

n = l  

Triclinic 

C 1 
C2 
D2 

n = 2  

Monoclinic 

C2 
D2 
D2h 

Monoclinic Orthorhombic 

C2 
Dz 
D2h 

0 2 
Dzh 
DzhxO 

n = 3  

Rhombohedral 

C3 
C6 
C6h 

03 
D6 
D6h 

n = 4  

Tetragonal 

C 4 
C4h 
C4hxO 

04 
D4h 
D4hxO 

n = 6  

Hexagon~ 

C6 
C6h 
C6hxO 

0 6 
D6h 
D6hxO 

n = 1 2  

Cubic 

T 

ThxO 

0 
Oh 
OhxO 
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tetragonal and hexagonal groups begin with a 4 or 6 
respectively, i.e. where the group contains a rotation 
tetrad or hexad. 

The monoclinic point groups appear twice in the 
same order, once in column 3 and once in column 4. 
The nine tetragonal and nine hexagonal groups with 
different entries in the second and third position appear 
twice. The six orthorhombic point groups with two 
different entries in positions 1-3 appear three times, the 
one with three different entries appears six times. 
Except for the monoclinic system the multiple entries 
appear because those point groups are contained in the 
corresponding holohedry in several different 
orientations. 

The generators determine which point groups 
appear in the same row and which ones in the same 
column. But how did we choose the order of the rows 
and columns? The number of elements in the point 
groups in rows 1-4 is n, in rows 5-10 and 12-21 2n, in 
rows 11 and 22-30 4n, and in row 31 8n, where n = l, 
2, 3, 4, 6 and 12 for columns 3-8. This shows that the 
requirement that the order of the point groups should 
increase from left to right has determined the arrange- 
ment of the columns uniquely. The rows have been 
arranged according to increasing order of the point 
groups as far as this is possible without mixing triclinic 
and monoclinic, monoclinic and orthorhombic groups 
in columns 3 and 4 of Table 1. Within each column the 
point groups in rows 1-4 are isomorphic as are those in 
rows 5-10, 12-21, 22-30. Table 2 gives the abstract 
groups that correspond to the point groups (cf Ascher 
& Janner, 1965). The order of isomorphic rows has 
been chosen such that the arrangement of generator 
sets in column 2 of Table 1 shows a maximum of 
regularities. These regularities will in many cases 
become more visible if we write instead of our choice of 
generators, which was made to resemble the inter- 
national symbol, a number of possible choices, e.g. for 
rows 8-10 (N',  i) = (N',  1), (N',  1 ' ) =  (N, 1'), 
(N, 1 ' )=  (N',  i'). 

3. The subgroup relationships within each column of 
the periodic table 

Ascher & Janner (1965) determined all the subgroups 
of the Shubnikov point groups, counting the subgroups 
as often as they appear in different orientations in the 
group under consideration. They presented their results 
in the form of a 122 × 122 triangular matrix. We shall 
consider the subgroup relationships only within each 
column of our periodic table, but we shall distinguish 
geometrically equivalent point groups in different 
orientations, which has the consequence that the 
elements of our matrix are either 0 or 1. We found that 
the same matrix (Table 3) describes the subgroup 
relationships within each of the long periods. Crossing 

out its rows and columns that correspond to rows of 
the periodic table without entry in the short periods, the 
resulting matrix describes the subgroup relationships 
within each of the short periods. 

We find, for example, the hexagonal subgroups of a 
hexagonal point group if we let the numbers of rows 
and columns in Table 3 refer to the point groups in 
column 7 of Table 1. Row 25 in the matrix tells us then 
that 6/mm'm' contains the hexagonal subgroups 6, ¢~, 
6/m, 62'2',  6m'm', ~]2'm', and 6m'2'. The columns 
give the supergroups: column 21 b, for example, tells us 
in the tetragonal interpretation that 3,'2'm is contained 
in 4/m'mm, 4'~tam'm, 42m1' and 4/mmml'. 

Another description of the subgroup relationship 
among the point groups in a column of the periodic 
table is given in Fig. 1. The numbers refer to the rows 
of Table 1. Fig. 1 admits four interpretations according 
to which of the four lines we read in the boxes. Reading 
the top line, we obtain the subgroup relationship in the 
short periods; the four interpretations together give the 
subgroup relationship in the long periods. Fig. 1 is 
equivalent to Table 3; in fact we can reconstruct Table 
3 as follows: the matrix element in row m and column n 
is 1 if and only if (a) m and n stand in their boxes on the 
same line and (b) the box containing n can be reached 
from the one containing m by going downwards along a 
marked path. Fig. 1 also shows that Table 3 could have 

Table 3. The subgroups of the Shubnikov point groups 
that appear in the same column of the periodic system 

1 

2 

5 
4 

5 
6 

7 

8 

9 

I0 

ii 

12 

13 

15 

b 

17a 

b 

18a 

b 

19a 

b 

20a 

l 

21~ 

I 

22 

23 

2~ 

25 

25 

2V 

288 

b 

b 

i,i 

1 i 

~ - - ~ -  

1 1 
! l :  

l i l  1 1 

1 

l !  

1 

1 

. 1 

1 1 

1 1 

L- ~ 
1 : i  

i .  1 

1 1 

- - f i -  
; 1 1 

1 1 

i 

' l  1 

\ 

i 

i 1 

1 

} 5 7 9 i] I} 15a b a h a b a b o b a b 25 25 2' a b a h :i b ~I 

¢, 4 ~ ~ io 12 i~; 16 17 18 19 26 ?i 22 2~ 2f: @8 ~9 ~0 
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been replaced by a 16 x 16 triangular matrix with four 
sets of numbering for its rows and columns. 

Only a small amount of information is needed in 
addition to Fig. 1 to write down all the subgroup 
relationships among the 3 x 40 + 3 × 16 = 168 
oriented point groups; i.e. to derive the corresponding 
168 x 168 triangular matrix. Obviously, it suffices to 
give the maximal subgroups that appear in other 
columns of Table 1. The groups in columns 8 and 7 of 
Table 1 have two such maximal subgroups, those in 
columns 6, 5, 4 one, and those in column 3 none. 
Examples: this maximal subgroup of the monoclinic- 
orthorhombic and rhombohedral groups is the tri- 
clinic-monoclinic group in the same box of Fig. 1; one 
of those two maximal subgroups of the hexagonal 
groups is the rhombohedral group in the same box of 
Fig. 1. 

4. On electric and magnetic effects compatible with the 
point-group symmetry 

Table 4 is a periodic table with additional information 
on properties shared by the point groups in each row. 
This time we wrote instead of the Schoenflies symbol 
the short international symbol that is conventionally 
chosen if one does not want to specify the orientation of 

Fig. 1. The lattice of subgroups of the Shubnikov point groups in a 
column of the periodic table. The numbers refer to the rows of 
Table 1. The four rows in the boxes correspond to the four 
possible interpretations of the figure: the top row gives the 
subgroup relationship for the short periods, the four inter- 
pretations together the subgroup relationship for the long periods. 

the point group. Point groups appearing more than 
once (i.e. the monoclinic and certain orthorhombic 
groups) possess all the attributes listed in columns 2-4 
in the rows in which the point group appears. As an 
example, m'm2', which appears in rows 19, 20 and 21, 
has the attributes H, E, EH, HEE, EHH, M, P, V, s, t, 
U, 

Column 4 indicates whether the groups in the 
corresponding row contain space inversion S, time 
inversion T, or space-time inversion U. s, t, u indicate 
that the group contains the corresponding inversions 
only in combination with a rotation. 

The rows marked with an M in column 3 contain a 
total of 31 different non-cubic point groups. The 
point-group symmetry of a ferro- or ferri-magnetic 
domain must be one of these point groups. Similarly, 
the 31 different non-cubic point groups in the rows 
marked with a P are the possible point groups of ferro- 
and ferri-electric domains. A crystal with one of the 31 
different non-cubic point groups contained in the rows 
marked with a V leaves non-vanishing velocities in 
certain directions invariant (cf., for example, Ascher, 
1974; Schmid, 1973). Triclinic point groups marked 
with an M, P or V are compatible with a permanent 
spontaneous magnetization, polarization, or current 
density in any direction; for monoclinic point groups 
these quantities may in some cases lie in a plane, in 
others they are restricted to a fixed direction; for 
orthorhombic, rhombohedral, tetragonal and 
hexagonal point groups these quantities are always 
restricted to a single direction, and for cubic point 
groups they must vanish altogether (Ascher & Janner, 
undated). 

Crystals with non-cubic point groups with the 
attribute M are pyro-, ferro-* or ferri-magnetic; crystals 
with a point group containing time inversion T will be 
diamagnetic, paramagnetic or antiferromagnetic; the 
remaining crystals are antiferromagnetic. Analogously, 
crystals with non-cubic point groups with the attribute 
P are pyro-, ferro-* or ferri-electric; crystals with a 
point group containing space inversion S are ortho- 
electric, paraelectric or antiferroelectric; the remaining 
crystals are antiferroelectric (cf Table II of Schmid, 
1973). 

Let g denote the density of stored free enthalpy. Its 
Taylor expansion with respect to the electric field E and 
the magnetic field H may, among others, contain the 
following terms 

- g : ~ i  Hi + x° Ei + a,kE, Hk + ½at,kHtEjEk 

+ ½fltjk El Hj H k. 

is the spontaneous magnetization, x~ the 
spontaneous polarization, ark the magnetoelectric 

* If the point group lies in one of columns 5 or 6 of Table 4 (i.e. if 
it belongs to the triclinic, monoclinic or orthorhombic system), weak 
ferromagnetism or weak ferroelectricity respectively is also possible. 
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12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Table 4. The periodicity of the electric and magnetic effects compatible with the point groups 

Tri- Mono- 
2 3 4 clinic clinic 

(H) (E) EH HEE EHH MPV 1 2 
H (EH) HEE EHH M s m 

E (EH) HEE EHH e t 2' 
EH HEE EHH V u m' 

(n)  HEE M S i 2/m 
(E) EHH P T 1' 21' 

EH V U 1' 2/m' 
HEE Stu 2'/m' 

EHH s Tu m 1' 
(EH) stU [ 2'/m 

STU [1' 2/ml'  
! 

Mono- Ortho- 
clinic rhombic 

EH (HEE) (EHH) 
(E) (EH) (HEE) EHH PV 

(H) (EH) HEE (EHH) M V 
(H) (E) EH HEE EHH MP 

(EH) n E E  EHH 
(EH) n E E  EHH 
EH HEE EHH 

H (EH) HEE EHH M 
E (EH) HEE EHH e 

EH HEE EHH V 
(HEE) 

EH 
(H) HEE 

(EHH) 

(E) EHH 

HEE 
(EH) 

(EH) 
EHH 

M 
P 

V 

2 222 
s m mm2 
t 2' 22'2' 
u m' m'm'2 

s mm2 
t 22'2' 
u m'm'2 

stu m'm2' 
$tu m'm2' 
stu m'm2' 
S 2/m rnmm 

T 21' 2221' 
U 2/m' m'm'm' 

Stu 2'/m' m'm'm 
s Tu m l ' ram21' 
stU 2'/m mmm' 
Stu I m'm'm 
sTu mm21' 
stU mmm' 
STU 2/ml'  mmml'  

Rhombo- 
hedral 

31' 

32 
3m 
32' 
3m' 

3m 
321' 
3'm' 
3m' 
3ml' 
3'm 

3rnl' 

Tetra- 
gonal 

4 

4' 

4/m 
41' 
4/m' 
4'/m 
41' 
4'/m' 
4/m 1' 

422 
4ram 
42'2' 
4m'm' 
;12m 
4'22' 
zi'2m' 
,i2'm' 
4'ram' 
4'2'm 
4/mmm 
4221' 
4/m'm'm' 
4/mm'm' 
4ram 1' 
4/m'mm 
4'/mmm' 
42m 1' 
4'/m'm'm 
4/mrnm 1' 

Hexa- 
gonal 

6 

6' 

6/m 
61' 
6/m' 
6'/m' 
61' 
6'/m 
6/m 1' 

Cubic 

23 

m3 
231' 
m'3 

m31' 

622 432 
6mm 43m' 
62'2' 4'32' 
6m' m' ;l'3m' 
6m2 
6'22' 
¢~'m'2 
6rn'2' 
6'ram' 
6'm2' 
6/mmm m3m 
6221' 4321' 
6/m'm'm' m'3m' 
6/mm'm' m3m' 
6mm 1' ;13m 1' 
6/m'mm m'3m 
6'/m'mm' 
¢~m21' 
6'/mmm' 
6/mmm 1' m3m 1' 

susceptibility, and a~jk, fl~Jk are non-linear magneto- 
electric susceptibilities. Column 2 of Table 4 states 
which terms in the above expression need not vanish 
because of the point-group symmetry. A quantity 
between brackets means that the corresponding term is 
permitted by all point groups in the row except the 
rightmost (cubic or hexagonal) one. If the quantity is 
not between brackets, the term is permitted by each 
point group in the row. The linear magnetoelectric 
effect is permitted in the 58 point groups with the 
attribute EH. Apart from certain hexagonal and cubic 
point groups, all the point groups that contain neither 
space inversion S nor time inversion T do possess the 
attribute EH. Analogously, with the exception of 
certain hexagonal and cubic point groups, the kineto- 
electric effect is permitted in all the point groups that 
contain neither T nor U and the kinetomagnetic effect 
in those that contain neither S nor U. In total there are 
58 different point groups permitting the magneto- 
electric effect, 58 permitting the kinetoelectric effect, 
and 58 permitting the kinetomagnetic effect (Ascher, 
1974). The 66 different point groups with the attribute 
HEE and the 66 different point groups with the 

attribute EHH permit the second-order magneto- 
electric effects I and II respectively. Those with EHH 
permit also piezoelectricity and the linear electro-optic 
(Pockels) effect, those with HEE piezomagnetism and 
the linear magneto-optic ('Mockels') effect. These and 
further effects permitted by EHH and HEE are listed in 
Table I of Schmid (1973). 

The purpose of this paper is not to describe the 
above-mentioned effects but just to show that our 
periodic system of point groups places those groups 
together that are compatible with a given effect. 

5. Discussion 

We note analogies between the periodic tables of 
elements and of point groups. In both cases there are a 
little over a 100 items arranged in periods of different 
lengths. As some elements with low atomic number, 
especially hydrogen, have properties that do not allow 
us to associate them uniquely with one column, some of 
the point groups with low number have properties that 
require repeating them in different rows. The chemical 
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elements in a column of the periodic system have 
properties that remain the same in the whole column, 
e.g. the number of valence electrons, and others that 
evolve along the column, e.g. the boiling point. 
Similarly, we found properties that remained the same 
in a row, e.g. the subgroup structure, and others that 
evolved along a row, e.g. the number of dimensions in 
which spontaneous magnetization or polarization is 
permitted. 

It is a pleasure to thank Professor H. Wondratschek 

for his suggestions, which led to substantial improve- 
ments of the present paper. 
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Abstract 

The subgroups of finite index of any n-dimensional 
space group are determined by the solutions of a set of 
congruences analogous in form and meaning to the 
Frobenius congruences which characterize the space 
groups themselves. These congruences can be solved in 
any dimension in which the space groups are known. 

Introduction 

The subgroups of the space groups play a central role 
both in theoretical crystallography and in the 
interpretation of experiment. For this reason, they have 
been studied intensively since Hermann first discussed 
them fifty years ago (Hermann, 1929). Hermann 
singled out two classes of subgroups for special 
attention, those which have the same translation 
subgroup as the original group (translation-equivalent 
subgroups) and those which belong to the same 
geometric crystal class as the original group (class- 
equivalent subgroups). This is justified by Hermann's 
well-known theorem that any subgroup is a class- 
equivalent subgroup of a translation-equivalent 
subgroup. 

* This paper is based on work carried out at the Institute of 
Crystallography, Moscow, under the auspices of the exchange 
program between the Academy of Sciences of the USSR and the 
National Academy of Sciences of the USA. It was presented to the 
Symposium on Mathematical Crystallography, Riederalp, 
Switzerland, in August 1979, held in honor of Professor Werner 
Nowacki. 

Following Hermann, attention has been focused on 
finding sequences of maximal subgroups. Recently, 
however, it has been shown that several contemporary 
problems require instead a direct knowledge of the 
subgroups of a given (finite) index. Thus Billiet (1977, 
1978) has pointed out the usefulness of a direct approach 
for understanding phase transitions, and this has also 
been shown to be effective in the theory of color sym- 
metry, in which the k-color groups associated with a 
given space group are determined by its subgroups of 
index k (van der Waerden & Burckhardt, 1961; 
Senechal, 1979). 

In this paper we present a simple method for finding 
all the subgroups of any finite index of any n- 
dimensional space group. It is well known (Zassenhaus, 
1948; Burckhardt, 1966) that the space groups 
themselves are determined by the vector solutions of a 
set of lattice congruences called Frobenius congruences 
or characteristic congruences. We show that their 
subgroups are also determined by a set of congruences, 
which are completely analogous to the Frobenius 
congruences in form and in meaning. Thus, in principle, 
the subgroups can be determined in a simple way. The 
congruences can be solved in any dimension in which 
the space groups themselves are known. And since the 
solutions of the 'Frobenius subgroup congruences' are 
vectors with integer coordinates, in many cases they 
can quickly be found 'by hand' using the theory of 
linear congruences of elementary number theory. 

For brevity it is assumed that the reader is familiar 
with elementary number theory, linear algebra and 
group theory, and with the space groups in two and 
three dimensions. 
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